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Abstract

This paper summarizes some recent advances in semiparametric estimation with surrogate vari-
ables that has been motivated by stockpile reliability assessments. The novelty of our results
are (1) our estimates are efficient; (2) we can accomodate continuous surrogate and response
variables.

1 Introduction

The Los Alamos National Laboratory is entrusted with the evaluation and certification of the safety and
reliability of the United States nuclear weapons stockpile. This mission presents unique challenges that
is inspiring the development of new statistical methodologies whose common theme is the integration and
combination of information from diverse sources (e.g., physics-based computer simulations, historical test
data, subsystem tests, accelerated again tests, etc.). This talk will focus on a particular aspect of combining
heterogeneous data sources that has been developed for the assessment of munition stockpiles.

2 Problem Statement

Suppose that for each unit in a stockpile, we have the option of performing either of two tests: A destructive
test to determine the status Z (pass or fail) of the unit, or, a destructive test measuring the performance X
of the unit, whose impact on the system reliability is known to be IP[Z = 1|X = z] = R(z;6), with unknown
parameter §. Since both tests are destructive, one never gets to observe both the status and the performance
for the same unit. Our problem is to assess the reliability of the stockpile using from independent samples
of system status Z" = (Zy, ..., Z,) and system performances X™ = (X, y1,---,Xntm)- This is possible if
0 is known. For example, the estimator (with known 6)
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The problem thus reduces to estimating the parameter 6. The parameter  can not be estimated from
independent samples of system status and system performance alone. To link the two samples and make the
estimation of @ possible, suppose that both data sets are supplemented with a common covariate measurement
W on each unit. This covariate, related to both the performance X and the status Z, is such that it does
not offer additional information about the distribution of the status variable Z that is not already contained
in the output measurement X. Thus the covariate W acts as a surrogate predictor for X, with the pairs
{(X;, Wy),i=n+1,...,n+m} forming a validation sample to precise their relationship. Age and storage
conditions are good examples of surrogate variables

A similar data structure also arises in medical application where it is known as the errors-in-covariable
with validation sample problem. See for example Wang and Pepe (2000), Pepe and Fleming (1991), Pepe



(1992) and Stefanski and Lee (1995). This problem has also been recently considered in econometrics by
Wang et al (2002).

3 Identifiability

Denote by R(z,z;6) = P[Z = 2|X = z], p(zlw) = PP[Z = 2|W = w], F(zlw) = PP[X < z|W = w], and
f(z|w) = OF (z|w)/0z. The surrogacy assumptions states that the status Z and the surrogate covariate W
are conditionally independent given the performance measure X, that is IP[Z|X, W] = IP[Z|X]. When it
holds, the conditional probability of the status variable Z given the surrogate W is

p(zlw) = /IP[Z =z|X =z, W = w|f(z|lw)dz = /R(z,w;ﬁ)f(m|w)dm.
Since both p(z|w) and f(z|w) can be estimated from the data sets

Dy :{(Z,',Wi);i:].,...,n} and D, :{(Xi,Wi);i:n-l—l,...,n-{—m}, (1)

this suggests that the under suitable conditions, the parameter § may be estimated as well. The need of
additional conditions are necessary is seen by considering the case where the performance and the surrogate
variables are independent. In that case

zmmﬂ=/R@wﬂﬁwmﬂw=/R&wﬂﬁ@Mw=Md

which does not depend on the surrogate. Depending on the specific distribution of X, the parameter § may
not always be identifiable. The following lemma gives a sufficient condition for identifiability of the reliability
function.

LEMMA If {f(-|lw)} is a complete family of densities, then the reliability function R(z,x) is identifiable.
Proof. Suppose to the contrary: there exists Ry (z,2) # Ra(z,z) such that

0 = pi(zlw) —pa(z|w) = /{Rl(z,w) — Ry(2,2)} f(z|lw)dz  Vw.
Completeness of the {f(:|s)} implies that R1(z,z) — R2(z,z) = 0, contradicting the hypothesis.

It follows from the Lemma that if the parameter 6 is identifiable in the (unobservable) model R(z, z;6),
then 6 will be identifiable in our setting whenever the collection of densities {f(-|w)} is complete.

4 Estimation

To gain insight into the proposed estimation method, let us consider first the case of known conditional
distribution of X given W. This may be seen as a limiting case in which we have an unlimited sample of
pairs (X, W). Let
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The maximum likelihood estimator for 8 solves the estimating equation
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Under mild regularity assumptions to justify interchanging derivatives and integrals, the score function is
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which is easily verifies to be also the minimizer of
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When the conditional distribution of X given W is not known, Pepe and Reilley (1995) propose to use
the validation sample to estimate the score function S by a ratio of conditional averages. Their method
requires that both the status Z and the surrogate variable W be discrete. In this paper, we consider an
alternative estimate of the score function using nonparametric regression.

Specifically, we propose to estimate the score function S(z,w;6) by minimizing with respect to a an
empirical counterpart of (3)

T K (“’ ‘hW") (2%\/}2(4)@-,0) - a\/R(z|X,-,0)>2,

i=n+1

where K (u) is a symmetric smoothing of sufficiently high order, and h the bandwidth that goes to zero as
the validation sample size m increases.
With the estimate for the score function, we estimate the parameter 8 as the solution of
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The following theorem states that this estimator has good statistical properties.

THEOREM Let 6 solve (4). If
A1 The parameter in 0 is identifiable.
A2 Both n,m — oo.
A3 The smoothing kernel K (-) is bounded with compact support and satisfies

a [K(u)du=1
b K(-) is of order r

A4 The bandwidth h satisfies /nmh*" — 0 and \/nmh — 0.

A5 The joint density f(x,w) of the joint density of X and W is r times continuously differentiable in w.
Let
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have finite expectations.



then

with
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the Fisher information matriz.

The proof involves approximating the estimator 6 by a suitable U-statistics using common tricks in
nonparametric smoothing. The conclusion follows from the CLT for U statistics.

We have several concluding remarks.

1. Under the conditions of the Theorem, estimator 8 is efficient as its asymptotic variance is the same as
if we would have known the joint distribution of X and W.

2. The asymptotic distribution of the estimator 8 is not sensitive to the choice of the smoothing parameter

h which can be chosen to be in
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3. The size m of the validation sample can be much smaller than n. In particular, the conclusions of the
theorem hold provided that

for small € > 0.
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for small ¢ > 0. Thus smoother joint densities f(z,w) allow for smaller validation samples.
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